A PERSONAL PERSPECTIVE ON LESSONS LEARNED FROM THE EVOLUTION OF TECHNOLOGY TRANSFER ACTIVITIES AT UCSD

Sadik Esener

Departments of NanoEngineering and Electrical and Computer Engineering
Director of the NanoTumor Center, Moores Cancer Center
Director of the Center for Nanomedicine and Engineering,
Institute of Engineering in Medicine
University of California, San Diego
La Jolla CA 92093
sesener@ucsd.edu

March 22, 2013 Istanbul, Turkey

WHY DO WE NEED TO INNOVATE AND TRANSFER ECHNOLOGY?

Innovation
Ignites
Wealth Engines

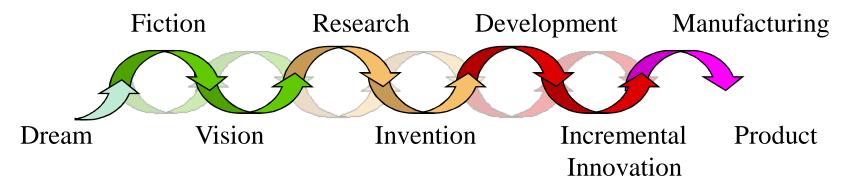
Economic Growth

Studies show half of GDP growth of last decades due to innovation

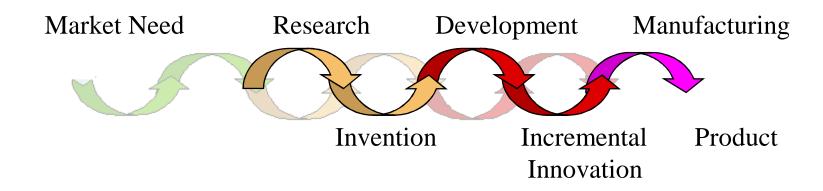
High-tech Jobs

→ E.g., Transistor/Integrated Circuit → Semiconductor Industry: 255,000 U.S. Jobs

2002 Sales: \$70B


- E.g., MIT spin-offs*
 - 4,000 companies; 1.1 million employees
 - Annual world sales of \$232 B

University Spin-offs play an increasingly important role in High Tech driven economies


The Bumpy Road from Dream to Reality

Tech push: Science or Technology Driven Innovation

Application pull: Market Driven Innovation

Key Challenge:

Speeding up the pace of innovation to maintain economic growth

The Four Key Components of High Technology

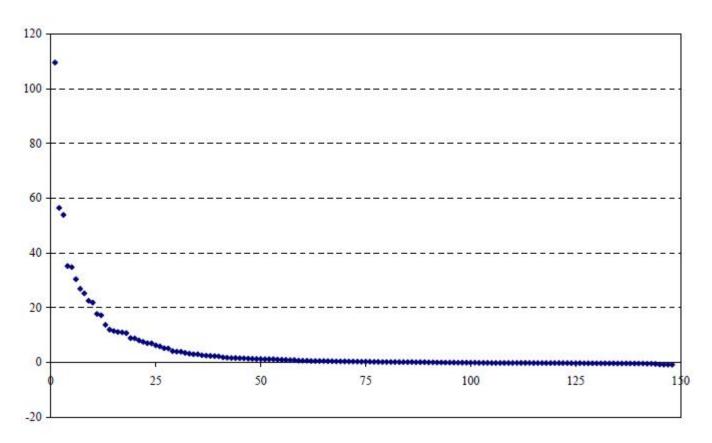
Administrative Government-State Regional

Innovative

Universities
Small R&D Companies
Large Company R&D
National Labs

Manufacturing

Content Providers
Defense Industry
Technology Platform Providers
Equipment Manufacturers


Financial

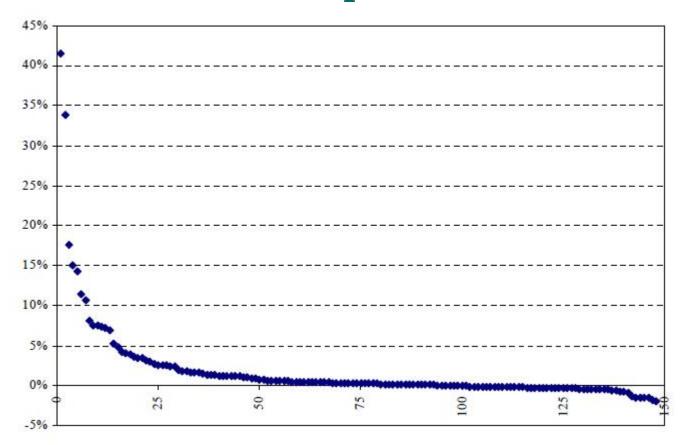
Angels VC Banks Large Companies

Tech Transfer: Impact on Universities Beyond the Bayh-Dole act (1980)

- The number of universities with a technology transfer office (TTO) increased from 25 in 1980 to 200 in 1990
- A 15-fold increase in university patenting and a more than 5-fold increase in the number of universities granted patents were observed between 1965 and 1992 (Henderson, Jaffe and Trajtenberg, 1998).
- Licenses and options executed by 55 U.S. universities increased 139% between 1991 and 2001, and their gross license revenue increased 485% between 1991 and 2001.
- The aggregate gross license revenue obtained by all U.S. universities approached \$1 billion in FY 2002
- The licensing income generated is found to be the most important criterion by which TTO offices measure their success (Thursby, Jensen, and Thursby, 2001)
- HOWEVER, only a few U.S. universities are obtaining large returns,, whereas others are continuing with these activities despite negligible or negative returns.

Net Licensing Returns of U.S. Universities, 1998-2002 (in million dollars)

Harun Bulut and GianCarlo Moschini 2006 U.S. Universities' Net Returns from Patenting and Licensing: A Quantile Regression Analysis

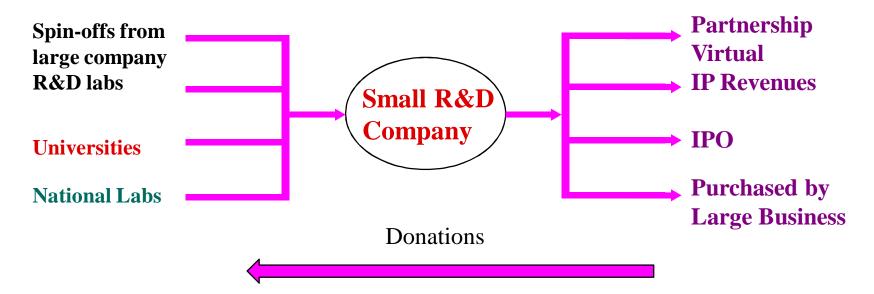

Data on U.S. Universities, 1998-2002: Descriptive Statistics

U.S. Universities	N	Variables	Min	Median	Max	Mean	Std. Dev.
All	148	Net Returns	-0.80	0.31	109.59	4.42	12.53
		Size	9.7	116.9	2,079.2	183.7	224.7
		Quality	0.6	318	2,691	485	519
		State R&D	0.0003	0.021	0.209	0.031	0.036
Public & No	45	Net Returns	-0.39	-0.03	4.02	0.47	1.06
Medical School		Size	17.9	67.1	426.4	110.2	96.5
		Quality	0.6	169	780	218	196
		State R&D	0.0003	0.013	0.070	0.018	0.019
Private & No	11	Net Returns	-0.77	0.24	26.97	4.12	8.23
Medical School		Size	16.9	44.5	780.3	147.4	224.9
		Quality	179	385	2,362	740	817
		State R&D	0.0063	0.056	0.209	0.060	0.053
Public &	59	Net Returns	-0.80	0.31	56.50	4.58	11.28
Medical School		Size	9.7	163.4	2,079.2	222.8	284.3
		Quality	3	325	1,882	469	407
		State R&D	0.0013	0.021	0.209	0.030	0.031
Private &	33	Net Returns	-0.29	1.65	109.59	9.61	20.46
Medical School		Size	25.0	184.7	1,120.0	226.1	210.3
		Quality	29	627	2,691	794	674
		State R&D	0.0019	0.036	0.209	0.043	0.047

Harun Bulut and GianCarlo Moschini 2006

U.S. Universities' Net Returns from Patenting and Licensing: A Quantile Regression Analysis

Net Licensing Returns as a Fraction of Total Research Expenditures of U.S.


Harun Bulut and GianCarlo Moschini 2006

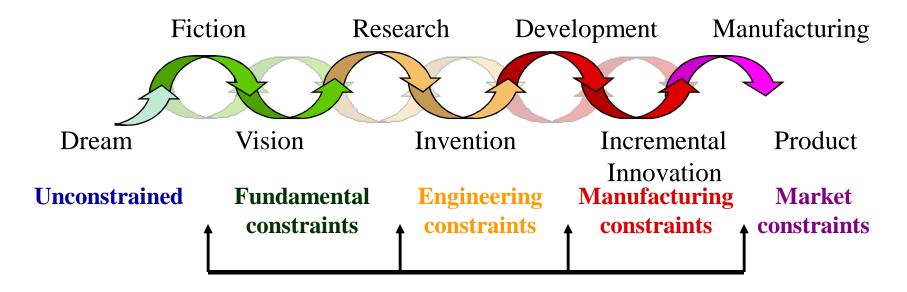
U.S. Universities' Net Returns from Patenting and Licensing: A Quantile Regression Analysis

Explosive growth in Small R&D Business in the 90's

50% of US High Tech Workers became employed in Small Businesses

Strengths:

- Agility-flexibility-ability to learn
 Open to novelty
 Understanding of market constraints
- High productivity Frugal
- High return promise to investors
- Low margins in manufacturing


Vulnerabilities:

- Uncertain access to technology platforms
- Vulnerable during economic recession
 ts Virtually big through alliances
- Require short innovation cycles for quick profitability

The Bumpy Road from Dream to Reality

Barriers to Innovation

Formation of Barriers preventing idea-knowledge-technology transition

Key Challenge:

Removing barriers to Innovation and Tech Transfer

EXTRINSIC BARRIERS TO INNOVATION TRANSITION

Human factors

- Lack of proper education-training
 - entrepreneurs,
 - venture capitalists
 - technology managers
 - educated workforce
- Cultural
 - •Risk taking

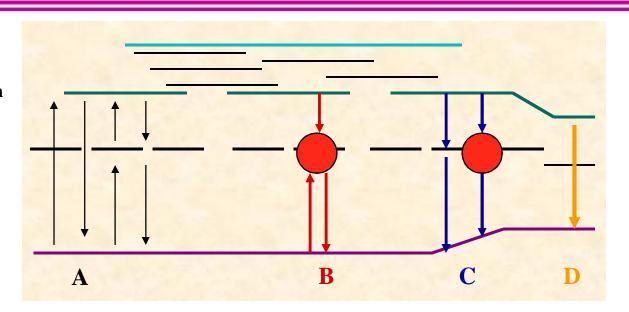
Technological factors

Economic factors

Political factors

Not invented here syndrome

Overcoming the Intrinsic Barriers



Basic Research

Applied Research

Development

Manufacturing

Vision

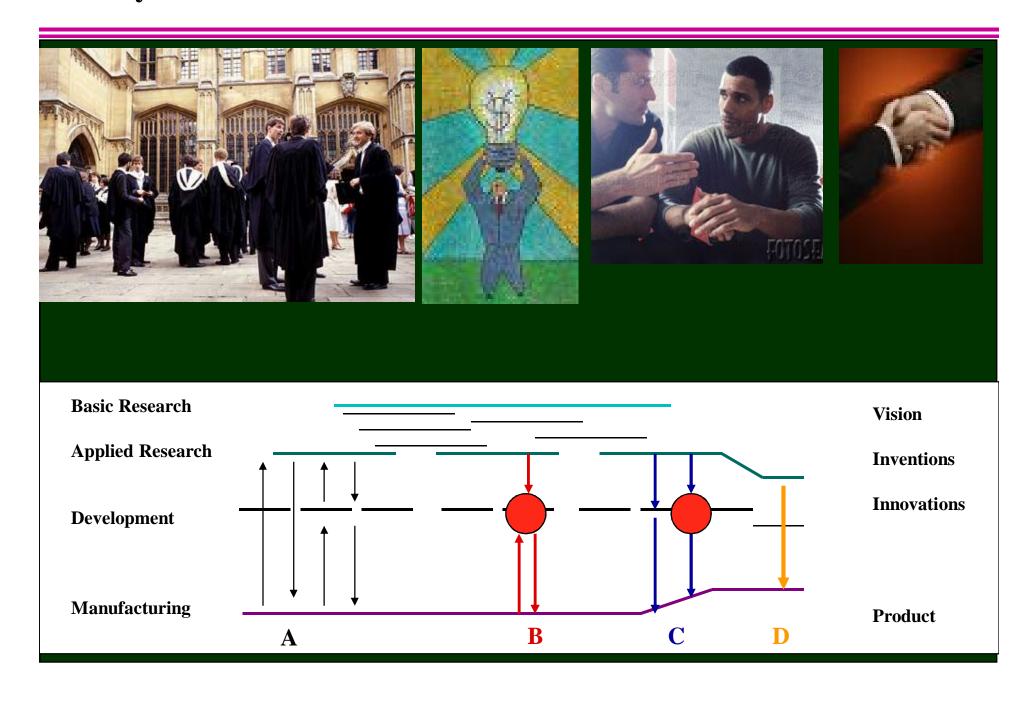
Inventions

Innovations

Product

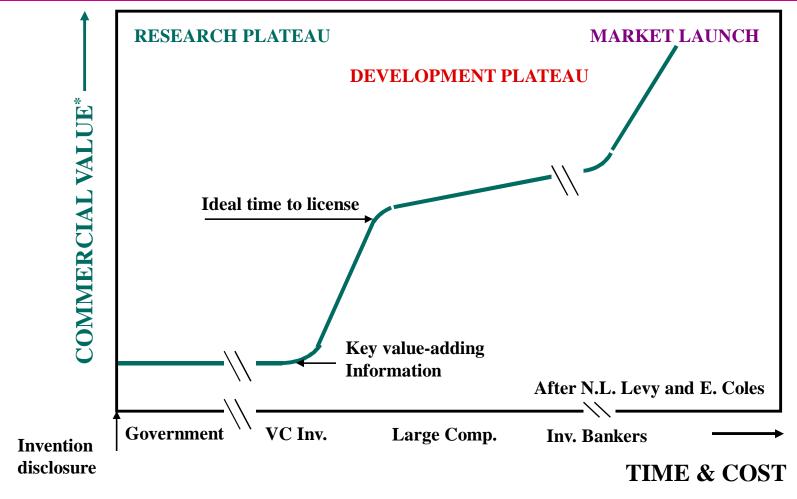
When there is a gap there is an opportunity!

A) Exchange of personnel


- Graduating students
- Industrial visitors
- Faculty engineer exchange
- Employee carries invention through

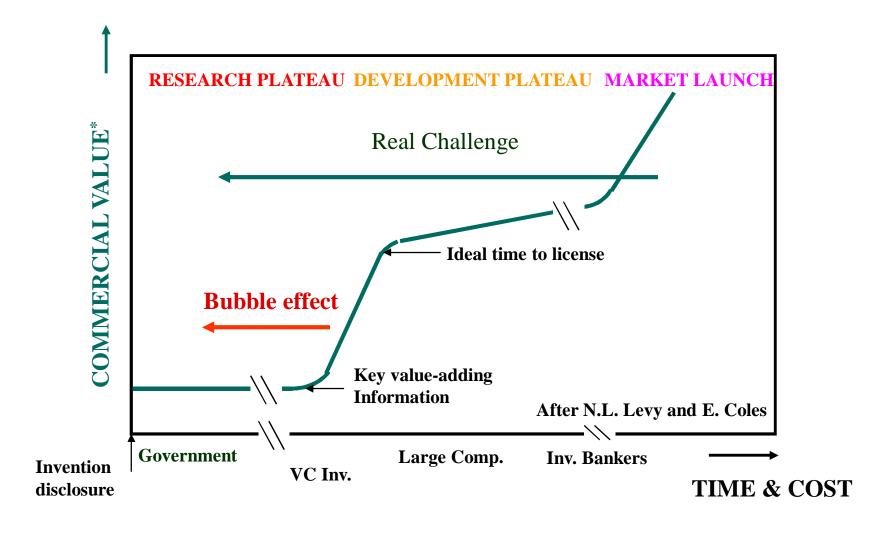
B) Applications Centers Small Business

C) Consortia


- University-Industry
 Research centers of excellence
- Small Business -University

Key to success: CONVERGENCE OF DIFFERENT WORLDS

Impact of Barriers



* Value refers to the sum that would be paid for the technology by a license

BARRIERS EXTEND THE DURATION AND COST OF DEVELOPMENT LIMITING ECONOMIC GROWTH

Bridging the gap: Which gap?

The Bumpy Road from Market Need to Product

Market Driven Innovation (rarely happens at Universities Except University Hospitals)

Market Need Research Development Manufacturing

Invention Incremental Product

Innovation

Examples: Invention of Mouse GUI

Timeliness of the Innovation

- Is there a need now? If not when?
- What is the state of the competition?
- Which supporting technologies are needed? Are they available?
- Is the cost compatible with market constraints

Starting it right

Selecting Partners

Technical team

Business team

Angels and Venture Team

Selecting Location and Ecosystem

Selecting your customers

Managing risk factors

Setting up the right interaction with TTOs standardization or case by case

CONCLUSIONS

For the university and faculty to derive benefits from innovation

- •Promote innovation culture with the right ecosystem
- •Find ways of planning the innovations such that they are timely
- •Understand and manage conflicts of interest
- •Team up with a seasoned business team and define exit strategy
- •Clearly define your risks and risk management approach
- •Donate some of the proceeds back to the university

- •TTO office should be able to see the big picture and understand how the particular innovation will benefit the university in the long term. Establish a suitable strategy to maximize gain in the long run
- •Create suitable ecosystem to facilitate local and global alliances
- •Establish a culture for donations