Commercialization of University Technology

Innovation, Technology Transfer and Licensing

Jack Turner, Associate Director M.I.T. Technology Licensing Office

Myths

- Royalties are a significant source of revenue for the University
- Expect a quick return of technology transfer investment
- Companies are eager to accept new technology from universities
- You should broadcast availability of technology for licensing
- The technology transfer office finds the licensee

Reality

- With the exception of the occasional "blockbuster," licensing revenue is small.
- Don't expect product royalties for 8 -10 years
- Most companies want quick time-to-market
- Publishing lists of available technology is not effective
- The inventor is the best source for leads

M.I.T. TLO Emphasis

- Service to inventors rather than a goal of maximizing revenue
- Work with inventors to help them realize their entrepreneurial ambitions
- Strategy of closing a lot of deals rather than getting the "best" deals
- Protect M.I.T.'s interests; get "fair" return

Patenting Decisions at MIT

- Inventor/Faculty discloses inventions
 - At their own discretion
 - Self-selection for entrepreneurial interest
- TLO Licensing Officer decides to file patent application:
 - In consultation with inventor/faculty
 - Informal market analysis
 - Applications filed for ~½ of all invention disclosures

"Choosing" a Licensee

- Small & start-up company bias
 - Large companies are rarely interested
- Licensing "leads" come from:
 - 50% inventors
 - 30% companies approach TLO
 - 20% TLO Licensing Officer marketing
- TLO actions & responsibilities:
 - Licensing Officers propose terms and can commit M.I.T. at negotiations
 - License agreements are reviewed and signed at the TLO

Why Exclusive Licenses?

- University technology is embryonic:
 - Product development feasibility unknown
 - Market potential unproven
 - Product development will require extensive risk capital
- Exclusive license provide:
 - Incentives to make high risk investment by giving "first mover" protection from competition for a period of time

Start-Up opportunities

- Not yet "ready for prime time" (i.e. large companies not yet interested)
- Basic and broad technology to spawn a whole business...not just a product
- Some short-term potential but with extremely high longer-term potential
- Enthusiastic (and realistic) inventor able to assist in transfer of the technology

Success Factors

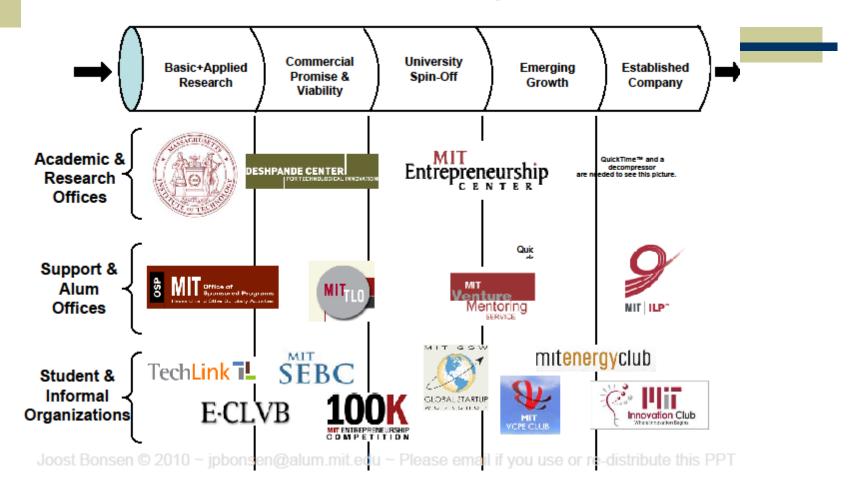
- Quality technology
- Enthusiastic and cooperative inventors
- Experienced, technically trained, businessoriented staff with industrial experience
- Clear policy, straightforward procedures rapid and efficient
- Flexible licensing terms
- Willingness to adapt to changing circumstances

Marketing Factors

- Targeted marketing
 - Focus on the few companies for which the technology is relevant
 - Build relationships with inventors, licensees, entrepreneurs, venture capitalists
 - Follow-up inquiries
 - Answer the telephone

License Agreement Factors

- Given a potential licensee, tailor terms to fit
 - Shared risk
 - Low initial fees
 - Equity in partial-lieu of up-front fees
 - Modest royalty rates
 - Diligence provisions
 - Investment, personnel, milestones (development and sales), sublicensing requirements


University Factors

- Strong support for technology transfer office
 - Clear definition of mission and policies
 - "Impact, not income"
 - Ability to hire experienced staff
 - Financial support for office infrastructure
 - Long-term investment in patents
 - Willingness to stand behind aggressive enforcement of patent rights

MIT Policy

- MIT owns the patent or copyright
 - Federally funded research Bayh-Dole Act
 - Industrially sponsored research
- Industrial sponsor license rights
 - Non-exclusive, royalty-free, pays patent costs
 - Royalty-bearing, limited term exclusive, pays patent costs
- Royalty Distribution (after expenses)
 - ⅓ to inventors
 - ¾ inventor's Department and MIT General Fund

MIT Innovation Pipeline

Finding Licensees: What works for us

- Interviewing the faculty member for leads
- Having companies/investors come to us to ask "what do you have?"
 - We spend a LOT of time simply "interviewing" companies/investors—and having them interview us.
- Contacting people at companies/investors whom we already know
- Occasionally doing <u>very targeted</u> cold calls

Inventor is the best sales person!

- Try for an early introduction of the inventor to the RIGHT person in the company or the RIGHT investor
 - Sell the Vision—not just the patent application!
- If the inventor won't meet with the potential licensee, abandon the patent!
 - But don't waste the inventor's time!

Elements of the License Agreement

- Definitions, especially field of use
 - Example: "...automotive safety applications related to occupant sensing."
- Grant of rights
 - To make, have made, use, offer to sell, sell, and import
 - To sublicense
- Retained rights
 - For research, teaching and educational purposes by M.I.T. and other non-profits
 - For government (if government sponsored)
 - For industrial sponsor (if industrially sponsored)
- Exclusivity
 - For specific field of use, if appropriate
 - Limited term (sometimes)

Elements of the License Agreement (continued)

- Diligence
 - Business plan
 - Obtain \$xx Million capitalization
 - Fund \$yy million in research (internal or at M.I.T.)
 - Perform against product development plan
 - Working model by <date>
 - Cumulative product sales (units and/or \$\$) by <dates>
- Failure to perform as specified may result in loss of license!
- Royalties
- Patent cost reimbursement

Valuation

- Embryonic technology
- Large risk to company
- Difficult to convince company to invest
- IP is essential
- Exclusivity

University Valuation Perspective

(Accurate valuation <u>not</u> very important)

- Minimal investment (patent costs)
- If licensed at all, university will recover patent costs
- License issue fee provides early return on investment
- Modest royalty provides handsome reward if commercially successful

Industry Valuation Perspective

(Accurate valuation is very important)

- Patent cost plus license issue fees
- Large research and product development cost
- Market and sales expense
- Patent may not issue or be substantially weaker
- Competing products
- Perceived market demand may erode

Typical Terms

- Exclusive
- Field of Use: Limited when appropriate
- License Issue Fee: \$25K \$100K
- Royalty: 3-5%
- Minimum annual royalty: escalates over time
- Equity (in lieu of issue fee): 5% after significant funding
- Patent expense reimbursement

MIT Licensing Office 2012

Staff			36
 Officers & Associates 		20	
Associates & Support		16	
 Invention Disclosures 			694
Patents filed	(new US utility apps)		194
 Patent issued (all US utility) 			199
 Licenses and Options 			107
Licenses (start-ups)		81(16)	
 Options 		26	
 Active agreements 			940

Success Stories

- OmniGuide Optical waveguide for laser surgery
- Liquid Metal Battery Energy storage
- ◆ 1366 Low cost photovoltaic cell
- QD Vision Quantum dots for spectral shitfing
- LiquiGlide Surface treatment to reduce adhesion
- Svaya Layer-by-layer application of thin films
- GVD Thermal chemical vapor depostion
- Xtalic Nanostructured alloy coatings of metal surfaces
- 24M Next generation lithium batteries
- N12 Carbon nanotube composites
- Siluria Virus-created scaffolds to create catalysts for production of petrochemicals from natural gas.

Conclusions

- Innovation must be pervasive at the University
- Technology transfer is a service which facilitates innovation, entrepreneurship and economic development; it should not be viewed as a source of revenue.
- Targeted marketing of inventions is essential
- Favorable license terms induce investment
- University technology can be a powerful engine for economic development

MIT Licensing Office FY 2012

Royalty income \$54.1 million

Lump-sum paymentfor future \$80.2 million

Equity cash-in\$ 2.8 million

Operating expense \$ 4.1 million

Patent expense \$16.5 million

(Reimbursement = \$10.4 million)

Inventors \$32.6 million

Other institutions
 \$ 7.0 million

MIT (DLCs and GIB) \$62.5 million